DDF-HO: Hand-Held Object Reconstruction via Conditional Directed Distance Field SN,
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[Hand-held Object Reconstruction]
* Given a single RGB image, DDF-HO predicts a 3D model for the
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« [Current Setting] Most existing methods face challenges due to We project the sampled ray onto the image, yielding a 2D ray or a dot (degeneration case), ‘
the use of Signed Distance Fields (SDF) as the primary shape and then aggregate features of all the pixels along the 2D ray as the 2D features, which o
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